Ozone therapy – a paradigm shift in dentistry

Sujatha B, Manoj Kumar MG, Pratap Gowd MJS, Raja Vardhan
Department of Pedodontics and Preventive Dentistry,
Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh
Correspondence to: prathampjs@yahoo.com; prathampjs@gmail.com

Abstract
In the era of antibiotic resistance, we need a naturally occurring substance like ozone to treat infection without any toxic side effects. Interest of Ozone use in medicine and dentistry is due to its anti-microbial, disinfectant, biocompatibility and healing properties. Since ozone is a powerful oxidiser, it effectively kills bacteria, fungi, viruses and parasites. Ozone therapy has opened new vistas in treatment modalities of dental pathologies for patients of all ages. It is used for treatment of early carious lesions, sterilisation of cavities, disinfection of root canals, periodontal pockets, bleaching of discoloured teeth, desensitization of extremely sensitive teeth, peri-implantitis, enhancing epithelial wound healing, as a denture cleaner and decontamination of tooth brush. Scientific support for ozone therapy presents a potential for an atraumatic, biologically-based treatment for conditions encountered in dental practice. The purpose of this article is to summarise the mechanism of action and different modalities of ozone therapy in the practice of dentistry.

Introduction
For over 130yrs, millions of people have benefited from the effects of ozone to eliminate disease and encourage natural healing. Christian F.Schonbein, a German chemist first discovered ozone and he is considered as the father of ozone therapy.\(^1\) The first ozone generator was developed by Werner Von Siemens in Germany in 1857 and C. Lender in 1870 used it
Perspective - Ozone therapy – a paradigm shift in dentistry

therapeutically for purifying blood. Edward Fisch (1932) was the first to use ozone to control infection in regular dental practice. Ozone (O₃, molecular weight of 47.98g/mol) is energized form of oxygen which is unstable and dissociates readily back to oxygen(o₂) and singlet oxygen(o) which is a strong oxidising agent.² It is a blue gas, with strong odor and most important gas in the stratosphere due to its ability to filter UV rays which is critical for maintenance of biological balance in the biosphere. In nature, ozone is formed by combination of oxygen in the air under the influence of factors such as UV radiation (from the sun), electrical discharges(lightening) and intense physical stress on water(such as water falls &ocean waves crashing onto rocks). Occupational exposure to ozone occurs through its production by office photocopying equipment, electric arc welding, mercury vapour lamps, laser printers, X-ray generators and high voltage electrical equipment etc.

The ozone concentration used may vary between 1 and 100gm/ml (0.05-5%) according to the medical/dental indication and the patient’s condition.³,⁴ Controlled ozone application has been found to be extremely safe, free from side effects and far free from most medications, including antibiotics. Ozone therapy was used extensively to treat infections, battle wounds and in routine treatment of cancer up to 1950’s. But later the advent of chlorine water sterilization which is more economical declined the use of ozone. However, research is showing that this ‘old’ technology has a very important role to play in medical and dental treatment especially with the development of multiple resistant microorganisms to antimicrobials. In the clinical setting, an ozone generator stimulates lightening via an electrical discharge field to produce ozone. Medical grade ozone is made from pure medical oxygen because oxygen concentration in the atmospheric air is variable. There are three different systems for generating ozone gas.

1. Ultra violet system: produces low concentrations of ozone, used in aesthetics & for air purification
2. Cold plasma system: used in air and water purification
3. Corona discharge system: produces high concentrations of ozone. It is the most common system used in the medical/dental field.

Mechanism of action ⁶

There are several actions of ozone such as anti-microbial, anti-inflammatory, analgesic, immune stimulating, anti-hypoxic, detoxicating, bio-energetic and biosynthetic (activation of the metabolism of carbohydrates, proteins & lipids) actions. Anti-microbial action: The antibacterial effect of ozone occurs as a result of its oxidant action on cells by damaging its cytoplasmic membrane due to ozonolysis of dual bonds and also ozone-induced modification of intracellular contents because of secondary oxidant effects. It does not damage healthy human body cells
because they have free radical scavengers like superoxide dismutase, catalase, hydrolase and antioxidant nutrients like vitamin C, E, beta-carotene, selenium, methionine, glutathione which inhibit the uncontrolled activity of free radicals and thus all healthy cells are protected. Only unhealthy cells such as cancer cells which have lost this protective mechanism and organisms such as bacteria, viruses, fungi, parasites which are devoid of these antioxidants and scavengers are destroyed. Ozone is very efficient in antibiotic resistant strains. In viral infections, ozone action lies in the intolerance of infected cells to peroxides and change of activity of reverse transcriptase, which takes part in synthesis of viral proteins. AIDS, Herpes, Hepatitis, Epstein Barr, Cytomegalovirus and other lipid envelope viruses are readily destroyed by ozone.

Anti-inflamatory & analgesic action: Ozone helps in the synthesis of biologically active substances such as interleukins, leukotrienes and prostaglandins which is beneficial in reducing inflammation and pain. The infection or inflammation is positively charged (acidic) and ozone is negatively charged (basic) so the chemistry of infection and inflammation attracts ozone to the area.

Immune-stimulating action: The electromagnetic action of ozone stimulates and modulates immune system particularly lymphocytes producing interleukins. It also activates the function of macrophages and increases sensitivity of microorganisms to phagocytosis. So the application of medical ozone is extremely useful for immune activation of patients especially with a low immune status&/or immune deficit.

Anti-hypoxic action: Ozone brings about the rise of \(\text{Po}_2 \) in tissues and improves transportation of oxygen in blood, which results in change of cellular metabolism-activation of aerobic processes (Glycolysis, Kreb’s cycle, B-oxidation of fatty acids) and use of energetic resources. Ozone acts as a super-oxygenator, bringing oxygen to tissues, assisting body in its natural healing process.

Bioenergetic and biosynthetic action: Ozone activates mechanisms of protein synthesis, increases amount of ribosomes and mitochondria in cells, elevating functional activity and regeneration potential of tissues and organs.

Forms of ozone administration: There are three basic forms of ozone application. 1) ozone gas 2) ozonated water and 3) ozonated oil. These forms of application are used singly or in combination to treat dental disease. Ozone gas has a half life of about 5-30 min and ozonated water has a life span of about 10hrs if the water is kept cold. Ozonated oil produces a stable product (ozonides) with a longevity exceeding 15 yrs.

Indications:
1. Arterial circulatory disorders
2. Immunodeficiency and immunedysbalance - Additive therapy in carcinoma patients
 - Diseases caused by viruses (e.g. Hepatitis)
3. Inflammatory conditions
4. Rheumatic diseases
5. External ulcers and skin lesions
6. Dentistry

Ozone is also used in the pharmaceutical industry, food processing industry, fabrics and cosmetics.

Dental ozone generators

Ozicure device (which is no longer available and is not licensed for use in Europe) and Heal Ozone developed by CurOzone USA Inc. The Heal Ozone generator was found to be safe to use following the manufacturer’s recommendations. After the treatment, a special filter in the generator turns the residual ozone back into oxygen.

Applications of ozone in dentistry

Bacteria are the cause of many problems in dentistry so a powerful agent is needed for effective elimination of these causative agents. In dentistry, ozone is used as a chairside disinfectant because of its synergistic part of the treatment, both in eliminating bacteria and oxygenating chair side environment. Ozone can be applied for the disinfection of Dental unit water lines (DUWL’S), treatment of early carious lesions, sterilisation of cavities, root canals, periodontal pockets, bleaching of discoloured root canal treated teeth, desensitization of extremely sensitive teeth, treatment of peri implantitis, enhancing epithelial wound healing such as ulcerations and herpetic lesions, as a rinse for the avulsed teeth, as a denture cleaner and decontamination of tooth brush.\(^{11-16}\)

Dental unit water lines disinfection

According to Montebugnoli et al (2004) DUWL’s are ideal environment for the growth of microorganisms entering dental units from the municipal water supply and from previously treated patients.\(^{17}\) Wirthlin et al (2003) concluded that controlling DUWL biofilm would have beneficial effects on nosocomial infections.\(^{18}\) The high frequency, deleterious effects and infection parameters of HIV and hepatitis viruses highlight the importance of effective infection control measures in dentistry. Ozone can be used for DUWL’s purification and to minimize cross infection due to its antimicrobial efficiency and lack of side effects. In model dental unit water lines, Ozone achieved 57% reduction in biofilms and 65% reduction in viable bacteria inspite of being used in a very low dose and with a short time of application.\(^{19}\)

Dental caries prevention and management

The commonly used ozone application device is a portable novel ozone delivery system with an ozone generator which delivers ozone gas at a concentration of 2100±200 ppm (615 ml/min of ozone at a low concentration of 4 µg/ml) and this device delivers ozone through a hand piece directly to the carious lesion. A silicon cup determines the area covered which tightly
seals the area and if there is any leak in the system, the ozone delivery system would automatically stop. After cavity preparation, just before restoration placement, the prepared area is covered with ozone gas for 20-30sec. This simple procedure dramatically reduces the post-operative sensitivity & eliminates the possibility of leaving infected dentin.

With ozone therapy and remineralization, only minimal quantities of dental tissue need to be removed to facilitate a restoration of the tooth. This makes the restorative treatment much simpler, less time consuming and much more cost effective.

Role in endodontics

Until recently, the dental profession relied on chemical irrigants reaching the main and lateral canals to disinfect and dissolve organic debris where it is impossible to instrument mechanically. Ozone was found to be effective against endodontic pathogenic microorganisms like E.Faecalis, Candida albicans, Peptostreptococcus micros and Pseudomonas aeruginosa disinfecting of root canals and dentinal tubules. Ozone also eliminates the distinctive anaerobic odor associated with some chronically infected teeth. The following steps should be added before the final fill of the canals.

- The files are coated with ozonated olive oil for lubrication & disinfection.
- The canals are prepared & then irrigated with ozonated water and dried.
- Before filling, a slow insufflation (45-60sec) into each canal with moderate/high concentration of ozone gas. Insufflation of ozone electrochemically travel into the lateral canals and dentinal tubules killing the microbes.

Nagayoshi, Kitamura et al examined the effect of ozonated water against E.faecalis & S.mutans infections and found significant reduction in the viability of these organisms invading dentinal tubules. Ozone will also penetrate through the apical foramen and enter into the surrounding and supportive bone tissue, encouraging healing & regeneration of bone. In root canal treated teeth, crown discolouration is a major esthetic problem, especially in anterior teeth. Teeth whitening can be done using ozone gas due to its strong oxidising properties. After removing the root canal filler material from the pulp chamber, the canal is sealed tight at the level of cementoenamel junction. Now a bleaching paste or a cotton pellet moistened in bleaching solution is packed in the chamber and sealed with GIC. Then the crown is irradiated with ozone for minimum of 3-4min. For bleaching of entire dentition, tray technique can be used. This ozone treatment bleaches the teeth with in minutes. Non carious hypersensitivity is due to many contributing factors among which attrition, erosion, abfraction, bite pressure, gum recession are common. Smear layer present over the tooth surface prevents the penetration of ionic calcium and fluorine deep into the dentinal
tubules. Ozone removes the smear layer, opens up the dentinal tubules, broadens their diameter and allows calcium and fluoride ions flow into tubules easily, deeply and effectively to plug dentinal tubules, preventing the fluid exchange through these tubules. Quick and prompt relief from root sensitivity has been documented after ozone spray for 60 sec followed by mineral wash on to the exposed dentine in a repetitive manner. Thus, ozone can effectively terminate the sensitivity problem within seconds and also results last longer than those by conventional methods.23,24,25

Wound healing:
Ozone has been reported to accelerate the healing of soft tissue conditions i.e: aphthous ulcers, herpes labialis, ANUG and other gingival infections because ozone encourages physiological healing rate as well as control opportunistic infections.26 It also reduces the post extraction healing time by forming a pseudo membrane over the socket and protecting it from any physical and mechanical insults.27 In alveolitis, there is accelerated healing by irrigation with ozonated water after removal of the necrotic plug and debris under antibiotic coverage. After radiotherapy in the jaw, oxygen supply may be considerably reduced in the affected area due to the obliteration of intraosseous vessels. Such compromised bone heal slowly compared to healthy bone, after surgical interventions like tooth extractions or implants. Ozone might be successfully used to treat such wound healing impairments after radiotherapy.

Role in periodontics
Studies found that ozonated water (0.5-4mg/L) strongly inhibited the formation of dental plaque and was highly effective in killing of both gram +ve and gram -ve microorganisms.16 Ozonated water can be used in the ultrasonic water reservoir, also as a pre treatment rinse before scaling, root planning and the sulci, pockets are irrigated using syringe and canula in non surgical pocket curettage. This process will reduce the initial pathogenic load on the patient locally and systemically. After treatment, each pocket & sulcus is insufflated with ozone gas which directly goes into tissues, sterilising the area.

Role in prosthodontics
A common occurrence found in full denture wearers is denture stomatitis, mainly due to candida albicans. This can be controlled by topical application of ozonated oil over tissue surface and over denture surface. The disinfecting action of ozone is also used to clean denture. Advice patients to soak dentures in ozonated water for atleast 10 min after removal and also rinse them before inserting into mouth.

Ozone therapy in implantology helps in bone regeneration. The socket is prepared conventionally and ozone is bubbled into the socket for about 40 sec, followed by placement of implant into the socket. This prevents infection and enhances bone regeneration. Matsamura K et al treated implants with ozone and found that there was regeneration of periodontal cells similar to that around natural teeth.28
Perspective - Ozone therapy – a paradigm shift in dentistry

Use of ozone therapy in child patients:
Most of the child patients have fear and anxiety towards dental treatment. Dahnhart JE et al evaluated the anxiety level of children (and their parents) treated with ozone and found that all children & parents reported significant anxiety prior to ozone treatment. However, following the treatment, the children reported they would be pleased to return for future treatments.²⁹

Contraindications

- Pregnancy
- Glucose-6-phosphate dehydrogenase deficiency (favism)
- Recent myocardial infarction
- Hyperthyroidism
- Severe anaemia
- Severe myasthenia
- Active haemorrhage
- Acute alcohol intoxication

Ozone toxicity

Even though ozone has certain benefits like non-invasiveness, simplicity, less time consumption and elimination of dental phobia, the inhalation of ozone can be toxic to pulmonary system and other organs. Known side-effects are epiphora and upper respiratory irritation, rhinitis, cough, headache, occasional nausea, and vomiting. However, complications caused by ozone therapy are infrequent at 0.0007 per application. In the event of an ozone intoxication the patient must be placed in the supine position, inhale humid oxygen, and take ascorbic acid, vitamin E, and nacetylcysteine. Because of ozone’s highly oxidative power, all materials that come in contact with the gas must be ozone resistant, such as glass, silicon, and teflon.⁷³¹

Conclusion

Any innovation that can help halt dental disease & dental phobia has to be welcomed. Ozone therapy allows a new vision, which complies with needs and demands of the public for non-invasive, effective dental care and it is truly a paradigm shift in dental practice. Ozone therapy has opened new vistas in treatment modalities for dental patients of all ages and applicable to a wide range of conditions of intra oral hard and soft tissues. It is especially suitable to the younger patients who are often scared of ‘drilling’ and find conventional treatment unacceptable. For the elder people having medical problems, that can complicate conventional treatment, ozone therapy is easier and more efficient. Treating patients with ozone cuts off treatment time, eliminates bacterial count more precisely and moreover, it is completely painless resulting increased acceptability and compliance of the patient. Further research in ozone would bring a revolution in dental practice in near future.

Acknowledgments: Dr Krishna Prasad L, Principal, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh.

References

17. Montebugnoli L, Sambri V, Cavrini F, Marangoni A, Testarelli L, Dolci G. Detection of DNA from...

31. Bikashpattanaik, Dinesh Jetwa, Seemapattanaik. Ozone therapy in
Perspective - Ozone therapy – a paradigm shift in dentistry